Automated Knowledge Component Generation for Interpretable Knowledge Tracing in Coding Problems

Relevance: 7/10 1 cited 2025 paper

This paper presents an automated LLM-based pipeline that generates knowledge components (KCs) for programming problems and uses them for knowledge tracing to predict student performance and estimate mastery levels on fine-grained skills. The framework is evaluated on real-world student code submission datasets and compared against human-written KCs and existing knowledge tracing methods.

Knowledge components (KCs) mapped to problems help model student learning, tracking their mastery levels on fine-grained skills thereby facilitating personalized learning and feedback in online learning platforms. However, crafting and tagging KCs to problems, traditionally performed by human domain experts, is highly labor intensive. We present an automated, LLM-based pipeline for KC generation and tagging for open-ended programming problems. We also develop an LLM-based knowledge tracing (KT)

Tool Types

Personalised Adaptive Learning Systems that adapt content and difficulty to individual learners.
Teacher Support Tools Tools that assist teachers — lesson planning, content generation, grading, analytics.

Tags

knowledge tracing student modelcomputer-science